Laser Marking Systems / Laser Markers

Products Lineup

MD-X series - 3-Axis Hybrid Laser Marker

Newly developed hybrid laser
Fast and clear marking on and processing of resins and metals

Catalogues Price

ML-Z series - 3-Axis CO2 Laser Marker

3-Axis control CO2 laser
High-quality marking on and processing of paper, resin, etc.

Catalogues Price

Simply put, laser markers use high-energy light to mark the surface of a part. Laser markers vary by the wavelength of light, and different wavelengths are optimised for marking and processing different materials.
The majority of industrial laser markers are YVO4 lasers, fibre lasers, UV lasers, and CO2 lasers.
Laser markers are used to permanently mark text, logos, barcodes, or 2D codes on parts in all industries. Common marking types include oxidising, annealing, engraving, etching, discoloration, and processing.

Benefits of Laser Markers

Inkjet and pad-printing systems leave impermanent marks that can be rubbed off or fade away. Laser marking does not wear off or contaminate the product being marked.

Because laser markers use light to directly mark products, there is no need to purchase consumables, clean print heads, or perform other routine maintenance tasks that are necessary with conventional ink and label marking methods. This also helps reduce associated maintenance costs.

Typical systems can only mark in 2 dimensions (X and Y). KEYENCE laser markers have 3-axis beam control, allowing them to mark across a larger area, compensate for part variation, and correct for mounting restrictions with zero physical equipment adjustments.

For industries that use shot blasting for strengthening parts, laser markers can be a solution for ensuring shot blast-resistant marks. Laser markers use engraving to create 2D codes that do not get fully tarnished with shot blasting.

Laser Marker / Laser Engraver Case Studies

Laser marking in the automotive industry

Learn how laser markers are used with automotive parts. KEYENCE introduces specific laser marking in automotive and other various laser marking with cars.

More Details

Laser marking in the electric vehicle industry

Curious how laser markers are used with electric vehicles? KEYENCE introduces specific laser markings for the EV industry and other various laser marking with batteries and ECUs.

More Details

Laser marking in the battery industry

Discover laser marker applications in lithium-ion battery manufacturing. Learn about lithium battery production and manufacturing processes.

More Details

Laser marking in the semiconductor industry

Explore the impact of laser marking technology in the semiconductor industry and how this innovative solution ensures effective identification and compliance.

More Details

Laser marking in the medical industry

Curious how laser markers are used in the medical industry, especially with medical device laser marking? KEYENCE introduces specific laser markings for the medical industry and other medical instruments.

More Details

Laser marking in the aerospace industry

KEYENCE offers cutting-edge laser marking technology, which is used in the aerospace industry to engrave or mark components with great precision.

More Details

Laser marking in the food / pharmaceutical industry

How are laser markers being used in the food and pharmaceutical industries? This section on laser engravers introduces industry-specific applications to help in developing new manufacturing processes.

More Details

Laser marking on metal

This section introduces applications for creating dark metal laser markings, white metal laser markings, deep laser engravings, and metal laser processing.

More Details

Laser marking on plastic

Discover plastic laser marking: explore laser etching and engraving. Explore the world of laser marking plastic, including dark and white markings, transparent designs, and so on.

More Details

Laser marking on glass

Unlock glass engraving with our laser marking solutions: precision glass marking and etching. Discover our glass engraving machine for exquisite laser glass engraving.

More Details

Laser marking on ceramic

Ceramic laser engraving is the process of using a laser marking machine to engrave a ceramic product. Laser machines remove ceramic material through high heat absorption, leaving behind a marked design.

More Details

Laser marking on wood

Elevate wood and paper marking with laser precision. Explore laser marking on wood and paper, with our advanced laser wood engraving machine.

More Details

Laser marking on rubber

Unlock precision rubber marking with laser technology. Explore laser marking for rubber and silicone rubber, including laser-cutting capabilities.

More Details

Frequently Asked Questions About Laser Marking Systems / Laser Markers

Laser markers work by scanning a focused beam of high-energy light across the surface of a part in the desired pattern. Different contrast, depths, and surface finishes can be achieved depending on the laser wavelength and part material.

Laser marking causes discoloration on the surface of a part, whereas laser engraving actually removes material and "digs in" to a part.

Practically speaking: no. Laser etchers interact directly with the surface of a part, so the only real way to remove a laser mark is to remove the material it's on.

With a variety of different models and wavelengths, KEYENCE laser markers can mark a wide range of materials. These include materials such as metal, plastic, glass, ceramic, wood, and rubber. There are even more materials than listed that can be marked but some have been shown to emit harmful gases. In this event, proper guarding and fume extraction should be used to provide a safe operating environment.

When choosing the correct laser marking system for your business many factors should be taken into consideration. Throughout this process, you should evaluate all laser marking models to determine the proper wavelength, wattage, marking field of view, and safety requirements. Below are the main factors:

Materials – this will narrow down laser marking models by wavelength.
Time allowed for marking – with marking time you can determine wattage.
Marking Style/Setup – whether it is a large logo or a matrix of small text this will determine the marking field of view.
Integration style – safety is always a priority so inline vs offline solutions will change the safety requirements.

With KEYENCE having a large range of wavelength options to choose from, most materials have the ability when properly tested to be marked or etched. Some that do not properly absorb laser light or produce toxic fumes include Delrin, PVC, Glue Backing, and Foam.

In comparison to a conventional IR laser marking system, a UV laser marking system has a much shorter wavelength, typically 355nm, which gives it many advantages when marking specific materials and applications. UV light is the best option for laser marking objects made of heat-sensitive materials, such as plastics or resins. With the lower wavelength, you receive a higher absorption rate allowing for contrast marking on a wider range of materials as well.

When deep engraving with a laser marking system, any depth can be achieved depending on how much time is required to complete the mark. Depending on the material and level of depth laser marking may not be the most efficient solution.

Laser Marker Applications

Laser marking

Laser marking is a marking method that uses a focused laser beam to alter the surface of a target. This section introduces how laser marking is performed with different materials as well as the different types of laser marking machines and how they are used.

More Details

Laser engraving

Explore the laser engraving craft: achieve precise markings on a variety of materials. Learn how laser engraving leaves lasting impressions on your products.

More Details

Laser etching

Discover the world of laser etching with KEYENCE: explore laser etching machines, materials, and a range of cutting-edge solutions for process enhancement.

More Details

Laser annealing

Exploring laser annealing: types, uses, and metal applications. Discover the transformative power of this advanced technique across industries.

More Details

Laser labeling

This page includes examples of successful processing improvements made possible by replacing labelers with laser markers (such as for substrate history management labels and vehicle nameplates).

More Details

Laser cleaning

Elevate production quality with laser cleaning technology: remove dust, rust, and imperfections efficiently, reducing costs and improving precision.

More Details

Laser rust removal

Efficient rust removal with KEYENCE laser rust remover machine. Experience the power of laser technology for precise rust removal.

More Details

Laser oxide removal

Check out KEYENCE's advanced laser oxide remover. It's an efficient laser that can even clean aluminium and precise cleaning with other oxide removal.

More Details

Laser ablation

Exploring laser ablation: types, uses, and metal applications. Discover the transformative power of this advanced technique across multiple industries.

More Details

Laser texturing

Exploring laser texturing: types, uses, and metal applications. Discover the transformative power of this advanced technique across industries.

More Details

Laser cutting

Laser cutting is a process that uses laser light to create clean, precise cuts. Learn more about laser cutting systems and their uses in various applications.

More Details

Laser paint removal

Explore the efficiency of laser paint removal and the advantages over traditional paint removal methods with KEYENCE's advanced laser technology.

More Details

Laser drilling

Learn how laser drilling can be used to drill holes by irradiating the laser light on a single point. Learn everything you need to know about drilling with a laser.

More Details

White engraving

White engraving is produced by applying a focused beam to the surface of a material to generate enough heat to cause the material to melt. This very quick melting and solidifying of the material causes light to interact with it differently, resulting in a white appearance.

Laser Marking Types

There are five types of laser markers that KEYENCE offers, and each is distinguished by wavelength and marking power. Understanding the identifiers and strengths of each will assist you in choosing the machine for your project.


UV lasers are known for their high absorption rate allowing for the process of “cold marking.” Cold marking refers to the ability to mark contrast without relying on the thermal process that Fibre lasers rely on. This is possible because the shorter wavelength of UV lasers generates higher absorption on almost all materials. A UV laser marker is ideal for highly reflective materials like copper, gold, and silver, as well as other materials like glass, plastic, and rubber.

More Details


Fibre lasers are identified by their high output power, quick marking speed, and long service life. These laser markers are versatile with materials and marking abilities. Fibre lasers can engrave, anneal, mark, etch, cut, and remove burr on metal, plastic, and ceramics. These lasers are best used on metals.

More Details


Hybrid laser markers combine the high quality and depth of focus from a YVO₄ laser with the long service life and high output of fibre lasers. This allows Hybrid lasers to generate more contrast and mark a wider range of materials than Fibre lasers.


CO2 lasers are distinguishable as they are gas lasers that use heat to mark materials. These lasers are not ideal for metals but do well on organic materials like paper, plastic, glass, and ceramic.

More Details


Green lasers excel at marking at a micron level because of the short wavelength. This is great for micro processing and for microscopic 2D codes, utilised often in the semiconductor industry.